伝統的木造建築物の制震改修について (その5 弹塑性地震応答解析)

伝統的木造建築(傾斜復元力) 制震装置

§1 はじめに 本報は、前報(その2)での亀壁実 験結果をもとにして、地震動を対象とした弾塑性応 答解析を行なうことにより、本建物の対地震性能に ついて検討を行なったものである。

§2 解析モデル 解析に用いたモデルは、図1に示 す改修後の柱配置に基づいて節点を設け、その節点 に屋根重量を含む全ての質量を集中質量として分割 配置し、2階床を剛床と仮定した61質点3自由度(X、

)モデルを作成して解析を行った。その解析モ Y. デルを図2に示す。

解析に考慮した水平方向復元力は、 柱の傾斜復元 力、 亀壁の復元力、 浮き壁の復元力、 接合部 と雑壁剛性の4種類であり、 と については実験 結果をバイリニア型履歴で近似し、 については静 的漸増載荷結果をもとに線形ばねとして付加してい

正会員	吉田	明義 ^{*6}	同	石丸	辰治*1
同	久保田	日 雅春*5	同	石垣	秀典 ^{*2}
同	秦	一平*3	同	東	義敬 ^{*4}
同	西塚	\mathbb{I}^{*4}	同	西村	陽介 *4

る。また、 の柱傾斜復元力については、既往の実 験結果から算出された実験式 1)を用いて算出し、5 折 線より構成される非線形弾性ばねによりモデル化を 行った。その傾斜復元力を算出する際に、柱に加わ る鉛直荷重は総質量 405ton を全ての柱が均等に負担 すると仮定して求めており、総柱数が 126 本である ため、1本あたりの負担荷重は3.2×9.8kNとなる。 また、 で柱・梁接合部の剛性を考慮したため、 及び の計算では、柱と梁は両端ピン支持で剛体と 仮定してモデル化を行なっている。

解析に考慮した水平方向復元力 図 3

図4~5に解析に用いた亀壁と浮き壁の履歴モデル のパラメーターを示す。

Retrofit of a Traditional Wooden Structure by the Wall Damper System named as Kame-Kabe (Part5 Elasto-plastic Response Simulation for the Design Earthquke Excitation)

YOSHIDA Akiyoshi, ISHIMARU Shinji, KUBOTA Masaharu, ISHIGAKI Hidenori, HATA Ippei, AZUMA Yoshitaka, NISHIZUKA Tadashi and NISHIMURA Yosuke

せん断力		表1 衫	刀期剛性	生と分	分枝	剛性	比
Q4	D4k		(傾斜	复元	力特	性)	
Q_2 Q_2 Q_2	D3K F	柱サイズ	k (kN/mm)	p ₁	p ₂	p ₃	p ₄
knik		240mm	0.21	0.30	0.12	0.02	0.01
Q_1 / r		270mm	0.22	0.31	0.13	0.03	0.01
h.		285mm	0.23	0.32	0.13	0.03	0.01
	\rightarrow	300mm□	0.23	0.33	0.14	0.04	0.01
1 2 3	⁴	450mm	0.30	0.34	0.20	0.06	0.01

図6 柱の傾斜復元力特性

表2 各折点のせん断力と変位(傾斜復元力特性)

けせくブ	Q ₁	Q ₂	Q ₃	Q_4	δ1	δ ₂	δ3	δ4
性リイベ	(kN)	(kN)	(kN)	(kN)	(mm)	(mm)	(mm)	(mm)
240mm	0.39	0.65	0.81	0.86	2.0	6.0	15.0	30.0
270mm	0.41	0.69	0.89	0.98	2.0	6.0	15.0	30.0
285mm	0.44	0.73	0.93	1.02	2.0	6.0	15.0	30.0
300mm□	0.46	0.75	0.98	1.07	2.0	6.0	15.0	30.0
450mm□	0.53	0.93	1.31	1.54	2.0	6.0	15.0	30.0

の柱・梁接合部剛性及び雑壁剛性に関しては、弾 性ばねで付与することとし、X方向には3.7kN/mm、 Y方向には5.0kN/mmの値を採用した。次にオイル ダンパーの減衰係数であるが、トグルを用いて設置 したオイルダンパー1 台あたりの減衰係数は 294.0kN・sec/mであり、トグルの増幅倍率が2倍で 地盤より3.0mの高さ位置での相対速度に作用する ように設置してあることから、下記計算により求ま る294.0 kN・sec/mの値を用いて解析を行った。

 $2^2 \times \left(\frac{3.0}{6.0}\right)^2 \times 294.0 = 294.0 kN \cdot \sec/m$

<u>§3</u> 固有値解析結果 図7に各要素の初期剛性値に 対する非減衰固有値解析結果の1~3次の固有モード 図を示す。各モードの固有周期は、1次が0.62秒、2 次が0.61秒、3次が0.58秒となっている。

図7 1~3次の固有モード

また、4 隅の節点における X 方向入力に対する刺 激関数を表3に、Y 方向入力に対する刺激関数を表4 に示す。刺激関数から、1次はY 方向並進のモード、 2次と3次が X 方向並進に捩れが伴っているモード であることが分かる。

表3 X 方向入力に対する刺激関数

		. =						
	No.1		No.2		No.3		No.4	
次数	Х	Y	Х	Y	Х	Y	Х	Y
1次	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01
2次	-0.08	-0.58	-0.08	0.51	0.78	-0.58	0.78	0.51
3次	1.08	0.57	1.08	-0.53	0.22	0.57	0.22	-0.53

表4 Y方向入力に対する刺激関数

	No.1		No.2		No.3		No.4	
次数	X	Y	Х	Y	Х	Y	Х	Y
1次	-0.01	0.97	-0.01	1.03	0.04	0.97	0.04	1.03
2次	0.00	0.03	0.00	-0.03	-0.04	0.03	-0.04	-0.03
3次	0.01	0.01	0.01	-0.01	0.00	0.01	0.00	-0.01

<u>§4</u> 弾塑性地震応答解析</u> 地震応答解析は、建築基 準法(平成12年6月告示)に示されている加速度応 答スペクトルにフィッティングするように作成した 図8に示す模擬地震動波形を用いて行った。

模擬地震動を X 方向及び Y 方向に入力して、弾塑 性応答解析を行った建物4 隅の節点の結果を表 5 及 び表6に示す。なお、全体構造減衰として3次モー ドまでの振動数に対して一律3%の粘性減衰を付与 して解析を行っている。表5と表6の結果から、X 方向及び Y 方向入力ともに最大応答変位は5.9cm(柱 傾斜角1/102)となっており、固有振動モードで表れ ていた捩れの影響も弾塑性応答解析結果ではほとん ど見られていない事が分かる。また、ダンパー1台あ たりの最大減衰力は、X 方向入力時で22.3kN、Y 方 向入力時で22.6kN である。

表 5 X 方向入力に対する最大応答値

	最大加速度	宴(cm/sec)	最大速度	(cm/sec)	最大変位(cm)		
節点位置	Х	Y	Х	Y	Х	Y	
No.1	206.1	-7.2	30.1	-0.6	5.7	-0.1	
No.2	206.1	6.8	30.1	0.6	5.7	0.1	
No.3	205.2	-7.2	30.3	-0.6	5.8	-0.1	
No.4	205.2	6.8	30.3	0.6	5.8	0.1	

表6 Y方向入力に対する最大応答値

	最大加速度		最大速度	(cm/sec)	最大変位(cm)		
節点位置	Х	Y	Х	Y	Х	Y	
No.1	6.1	204.0	0.4	29.8	0.1	5.8	
No.2	6.1	206.2	0.4	30.7	0.1	5.9	
No.3	6.2	204.0	0.4	29.8	0.1	5.8	
No.4	6.2	206.2	0.4	30.7	0.1	5.9	

<u>§5</u> まとめ</u> 模擬地震動入力による弾塑性応答解 析を行った結果、柱の最大傾斜角は 1/102 程度であ り性能目標をほぼ満足している事が分かった。また、 本報での弾塑性応答解析結果と前報(その4)で行っ た応答予測値とを比較する事により、応答予測手法 の精度が実用範囲内であることが示された。

<参考文献 >

1. 河合直人:古代木造建築の柱傾斜復元力に関する模型実験,

日本建築学会大会学術講演梗概集, 1991.9

*1	日本大学理工学部 教授・工博	*1 Prof, College of Science and Technology, Nihon University, Dr. Eng
*2	日本大学理工学部 助手	*2 Assistant, College of Science and Technology, Nihon University
*3	日本大学理工学研究所 技手	*3 Assistant Eng, Research Institute of Science and Technology, Nihon University
*4	日本大学大学院理工学研究科	*4 Graduate School of Science and Technology, Nihon University
*5	飛島建設	*5 Tobishima Corporation
*6	魚津社寺工務店	*6 Uotsu Shaji Corporation